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Abstract Over the past few decades, lake ice phenology in northern temperate lakes has exhibited
increased interannual variability. The resulting increase in the incidence of unusually early spring lake
ice-out dates has the potential to affect stability, health, and function of the lake ecosystems. Characterizing
the dependency of spring lake ice-out date to winter and/or spring climate variables offers foreknowledge
on the annual lake ice cover season, as the spring ice-out date is an integrated response to prevailing
weather/climate conditions during winter and spring. Here a circular regression framework is presented
where ice-out date regression models, conditioned on a suite of predictor winter and/or spring climate
variables (i.e., degree days and snowfall), are developed for 12 Maine lakes to determine the relative import
of winter and spring meteorological conditions on year-to-year variability of ice-out dates in Maine lakes. In
the circular regression models, ice-out dates are expressed as points on a unit circle instead of real line, as it
preserves the periodicity and order of time-of-day variables independent of the choice of reference point.
Results show that (a) the magnitude and variance of seasonal spring temperatures explain more than half
of the total variability in spring ice-out date for Maine lakes, (b) the modulating efficacy of spring snowfall
on the timing of spring ice-out dates is the strongest in northern interior Maine lakes, (c) the role of winter
degree days in determining the ice-out dates in Maine lakes is significant across all climate regions, and (d)
the effect of winter snowfall on ice-out dates is significant in coastal Maine lakes. Diagnostics suggest that
there are other climatic and nonclimatic variables that produce shifts in the lake ice-out dates.

1. Introduction

In temperate regions, there has been an increase in the interannual variability of lake ice phenology over
the past three decades (e.g., Kratz et al., 2001; Magnuson et al., 2000; Weyhenmeyer et al., 2011). This has
led to the rise in the frequency of unusually short ice cover periods. For instance, Beyene and Jain (2015)
found that interannual winter climate variability, linked to northern hemisphere atmospheric teleconnection
patterns, promote early ice-out dates in Maine lakes. Winter limnology studies show that the shortening of
the ice cover season in lakes has detrimental effect on lake ecology and services (e.g., Hampton et al., 2017;
Prowse et al., 2011). The year-to-year variability in the timing of spring lake ice-out dates is primarily a response
to prevailing winter and spring meteorological conditions, as they control the surplus/deficit in the energy
balance at lake surface determining lake ice growth/melt (e.g., Leppäranta, 2010; Livingstone, 1997). However,
aside from spring temperatures, the efficacy of seasonal meteorological variables particularly during winter,
in modulating the timing of the spring ice-out dates of lakes, is not well understood. Given that winter climate
variability over the northern Temperate and Arctic regions is influenced by large-scale oceanic-atmospheric
circulation patterns, determining the role of winter on the variability of ice-out dates would afford seasonal
or longer outlook on the ice cover season of lakes, both at local and regional scales.

Winter and spring climate variability affect the timing of spring lake ice-out date differently. Winter meteo-
rological conditions govern ice cover processes related to the characteristics (e.g., type and thickness) of the
winter ice that melts in spring. For instance, winter air temperatures (particularly the accumulated freezing
and melting degree days—AFDD and AMDD) determine the cold content available at lake surface to cool and
thicken the ice cover (e.g., Leppäranta, 2015). Winter snowfall, on the other hand, can alter the composition of
the ice cover by promoting snow ice formation, as well as reduce the thickness of lake ice, due to its insulating
effect (e.g., Adams, 1976; Vavrus et al., 1996). In contrast, spring climate variables control ice processes that
govern the rate of melt. Spring air temperature, for example, influences the thermal energy available in the
atmosphere to overcome the freeze content and melt the winter ice cover, while spring snowfall can reduce
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the melt rate by increasing the surface albedo and cold content of the ice cover (e.g., Williams, 1965). Model-
ing offers the opportunity to disentangle the dependence of year-to-year variability of lake ice-out dates to
winter and spring weather and climate processes.

In empirical lake ice studies, ice phenology models, conditioned on seasonal climate variable(s), are often built
using traditional regression method. The underlying assumption in this method is that the response variable
(e.g., ice in/out dates) is a linear continuous variable, which has a true start point and magnitude. However,
given that day-of-year variable is inherently unbounded (no start and end point) and cyclical, representing
time variables as a linear variable results in the (i) loss of the periodic nature of time-of-year (ii) order and rank
of ice in/out date variables to change with respect to the choice of origin (e.g., Lee, 2010). For instance, if using
the Julian calendar, 31 December and 1 January are always 364/365 magnitudes apart and (say) 1 January
and 1 September have a magnitude of 1 and 242, respectively. On the other hand, if using the water year, 31
December and 1 January are 1 magnitude apart and 1 January and 1 September have a magnitude of 124
and 1, respectively. According to Mallows (1998), choosing data appropriate for model is a critical first step
in statistical model building, as erroneous representation of the phenomenon under consideration in model
produces model uncertainty that is much more than simple statistical inefficiency. This highlights the need
for an alternate approach for characterizing day-of-year variables in regression models for ice phenology such
that (a) the order of ice in/out dates are insensitive to the choice of reference point and (b) the distributional
assumptions employed for analyses take into account cyclical nature of time of year.

One such approach is the use of circular (angular) regression method, where the day-of-year variable is rep-
resented as a point on the circumference of a unit circle (Jammalamadaka & Sengupta, 2001; Mardia & Jupp,
2009). On a circle, the beginning coincides with the end, and as such representing day-of-year variables as
circular variables captures the periodicity and order of calendar days, independent of the choice in reference
point. Furthermore, the circular regression approach employs unimodal circular distributions most notable
of which is the standard von Mises distribution (Mardia & Jupp, 2009). In addition, in circular regression mod-
els where the covariates are linear variable(s) (e.g., temperature and snowfall), link functions such as 2 tan−1( )
are used to map the covariate variable from the real line onto a unit circle. Consequently, the circular regres-
sion method is employed here in developing ice-out models of increasing complexity, to clarify the efficacy of
winter and spring temperatures and snowfall in modulating the variability of spring ice dates in Maine lakes.

For this study, the historical ice-out and climate data for 12 Maine lakes are used. The next section discusses
source of the ice-out and meteorological data and delineation of winter and spring season for this study. The
methodology section provides a concise summary on the theory of circular regression, and the framework
applied here for building and assessing circular regression models for ice-out dates. The result section dis-
cusses diagnostic results from model outputs and residuals for selected lakes. It also provides an assessment
if winter and spring degree days and snowfall are adequate in explaining the variability in the spring ice-out
dates in Maine lakes.

2. Data
2.1. Lake Ice-Out Date Data
Lake ice-out date refers to the date in spring, when winter ice completely disappears from the lake surface
(Hodgkins et al., 2002). The annual spring ice-out dates from 1950 to 2010 for the 12 studied Maine lakes were
obtained from a publication by U. S. Geological Survey (Hodgkins, 2010). Data from this database are selected
because of the consistency over site of observation, and ice-out date definition for each lake. Furthermore, the
main criterion for selecting these lakes is that they had more than 50 years of ice-out date data. Morphometric
data for the 12 lakes are given in Table 1.

2.2. Temperature and Snowfall Data
The 1950–2010 daily temperature and snowfall data for each lake are obtained from the nearest U.S. Historical
Climatology Network (USHCN) stations. Data from USHCN stations are preferred, because of the long period
of serially complete data, genuine quality assurance, and control checks imposed on data. The procedures
undertaken by USHCN for data quality control are described in Williams et al. (2007). Appropriate modeling of
lake ice-out dates and meteorological variables necessitates that stations have more than 30 years of complete
data. In this study, a year is considered complete if it contained 90% of the winter and spring temperature and
snowfall data. Climate data from seven USHCN stations are used in this study.
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Table 1
Summary Statistics of Ice-Out Dates From 1950 to 2010 for Selected Maine Lakes Using Circular Statistical Approach

Circular statistics

Mean von Mises distribution

Standard Watson’s U2

Lakes 𝜇o Date (Julian day) deviation 𝜃 (SE) 𝜅 (SE) statistic (p value)

Damariscotta 1.74 11 April (101) 11.37 1.74 (0.03) 24.59 (4.41) 0.07 (p > 0.1)

China 1.80 14 April (104) 10.16 1.80 (0.03) 35.32 (6.35) 0.07 (p > 0.1)

Maranacook 1.84 17 April (107) 9.55 1.84 (0.02) 39.64 (7.13) 0.06 (p > 0.1)

Auburn 1.86 18 April (108) 8.73 1.86 (0.02) 44.3 (8.18) 0.04 (p > 0.1)

West Grand 2.00 26 April (116) 8.61 2.00 (0.02) 41.89 (7.54) 0.07 (p > 0.1)

Norway 1.92 21 April (111) 7.57 1.92 (0.02) 65.37 (12.42) 0.08 (p > 0.1)

Sebec 2.03 28 April (118) 7.28 2.03 (0.02) 65.49 (11.89) 0.08 (p > 0.1)

Mooselucmeguntic 2.15 5 May (125) 7.17 2.15 (0.02) 66.34 (12.17) 0.05 (p > 0.1)

Rangeley 2.17 6 May (126) 7.16 2.17 (0.02) 66.17 (11.94) 0.05 (p > 0.1)

Moosehead 2.16 5 May (125) 7.62 2.16 (0.02) 60.36 (10.88) 0.05 (p > 0.1)

Squapan 2.11 3 May (123) 6.05 2.11 (0.01) 88.12 (16.91) 0.04 (p > 0.1)

Portage 2.17 6 May (126) 5.78 2.17 (0.01) 100 (18.68) 0.04 (p > 0.1)

Note. SE = standard error.

Mohseni et al. (1998) has shown that climate data from meteorological stations, as far as 200 km from site,
can be applicable in predicting stream water temperatures. Here the distance between lake and nearby
meteorological station is on average about 20 km, while the maximum distance is about 80 km (see Figure 1).

2.3. Seasonal Degree Day Indices
The net energy balance at lake surface determines the formation, growth, and melt of surface ice cover, and
air temperature is directly or indirectly related to the net long wave radiation, sensible heat, and latent heat
flux. Consequently, seasonal winter temperature indices such as AFDD and AMDD have often been used to
approximate the available freeze/thaw energy to form/melt lake ice (e.g., Ashton, 1986; Kirillin et al., 2012;
Leppäranta, 2015). When calculating seasonal AFDD/AMDD, lake, and glacial ice studies, different temper-
ature thresholds are employed for freezing/melting of water/ice, to compensate for different atmospheric
conditions or sampling problems. However, in this study, the AFDD (AMDD) during the ice cover period is
computed, as the daily degree days below (above) freezing of water (0 ∘C or 32 ∘F) summed over the total
number of days when daily average temperature was below (above) freezing.

2.4. Delineating Winter and Spring Period in Maine
In lake ice studies, the winter season provides the bulk of freezing energy to grow lake ice, and consequently,
the winter AFDD have often be used to gage the freezing energy available to form and grow ice. Thus, to
delineate the winter months during the lake ice cover period in Maine, the smoothened mean profile of AFDD
from 1950 to 2010 over the period between 1 December and 30 April is generated using nonparametric ker-
nel estimators for each station (see Figure 2). Across the six stations, the mean (median) date when 90% of
the winter and spring AFDD is attained lies prior to 10 March. Thus, in this study, winter season represents
the period between December and February months, and spring season refers to the period between March
and April.

3. Methodology
3.1. Circular Data: Lake Ice-Out Dates
Circular/directional data are the data that can be represented as locations (points) on the circumference of
a unit circle (e.g., Lee, 2010). They are encountered in various scientific fields and are usually expressed as
angles from an arbitrarily selected zero reference and sense of rotation. Examples of this type of data include
readings of wind direction or animal orientation, relative to a reference direction. In addition to data that
are initially measured as angles, circular data also applies to measurements such as time of day/year that
show periodicity. In general, circular data have no natural ranking, since the origin and sense of rotation is
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Figure 1. Location of selected Maine lakes (and meteorological stations) and circular plots of their spring ice-out dates. In the map, the filled red triangles and
black circles represent the location of U.S. Historical Climatology Network stations and lakes, respectively, while the gray lines indicate the climate divisions in
Maine. For each circular plot, the black dots and arrow denote the spring ice-out date of lakes from 1951 to 2010 and the mean ice-out date, respectively, while
the red curves represent the fitted von Mises distribution for ice-out dates. Inset map of the United States shows the location of Maine.

arbitrary (e.g., Fisher, 1992). Furthermore, measurements are cyclical just as in a circle, the beginning coincides
with the end (i.e., points 0 and 2𝜋 coincide). Thus, the use of conventional statistical methods in analyzing
circular data often results in misleading or absurd results. For further discussions on the nature of circular data,
reader is referred to books by Mardia and Jupp (2009), Jammalamadaka and Sengupta (2001), and Fisher and
Lee (1992).

3.2. Summary Statistics for the Ice-Out Dates of Studied Lakes
As illustrated in earlier sections, circular statistical approaches are more appropriate method for describing
calendar data such as lake ice-out dates. Thus, the historical ice-out date of studied lakes are transformed to
angular data by computing

𝜃i = Di
2𝜋

Dyear
(1)

where Dyear represents the number of days in a year. The variable Di is the spring lake ice-out date in Julian
day, and 𝜃i is its angular value in radians. Since 𝜃i also corresponds to the polar coordinates (cos 𝜃i , sin 𝜃i) of
a location on a unit circle (r = 1), the historical spring ice-out dates of lakes can graphically be depicted as
points on a unit circle.

The 1950–2010 climatology of the spring ice-out dates across studied lakes are characterized by estimating
the mean and spread. For a sample of n ice-out dates, the sample mean ( ̂̄𝜃) and variance (𝜌̂) are determined
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Figure 2. The profile of AFDD growth as a function of days between 1
December and 30 April for six USHCN stations in Maine from 1950 to 2010 .
(a) Annual dates when 90% of the winter and spring AFDD is attained for six
USHCN stations. Each box plot represents the distribution of the annual
dates with the white circle indicating the median, the box denoting the
0.25th and 0.75th quantile range, and the whiskers representing the 𝜏 = 0.1
to 𝜏 = 0.9 quantile range. (b) The 1950–2010 mean smoothened profile of
AFDD as a function of the days between 1 December and 30 April for six
USHCN stations. This was generated using nonparametric kernel density
estimator (Bowman & Azzalini, 1997). The filled circles on the mean profile
denote the mean (median) date at which 90% of the winter and spring
AFDD from 1950 to 2010 is attained. The violet, blue, green, orange, red, and
black colors signify Gardiner, Lewiston, Corinna, Farmington, Brassua, and
Presque Isle stations, respectively. The gray area designates the winter
season. AFDD = accumulated freezing degree days; USHCN = U.S. Historical
Climatology Network; DDF = Degree Day Fahrenheit.

by computing

̂̄𝜃 = arctan( S
C
) (2)

𝜌̂ = 1 −
√
(S2 + C2) (3)

where

S =
∑ n

i=1sin 𝜃i

n

and

C =
∑ n

i=1cos 𝜃i

n

C and S represent the x and y coordinates of the mean lake ice-out date
on the unit circle. The measure of dispersion (𝜌) for angular data on a unit
circle, ranges from 𝜌 = 0 (corresponds to all ice-out dates occurring on
the same date of the year) to 𝜌 = 1 (indicates maximum variability). Alter-
natively, the circular standard deviation (𝜎) can be calculated using the
equation

𝜎̂ =
√
−2 ln(1 − 𝜌) (4)

Figure 1 and Table 1 present the summary statistics for the historical
ice-out dates of studied lakes. For the 1950–2010 period, they show that
the mean spring ice-out dates of Maine lakes range from mid-April in
coastal and southern interior lakes to early May in northern interior lakes.
Moreover, contrasting the circular standard deviation of the ice-out dates
for studied lakes indicate that coastal lakes have greater variability in
their timing of their spring ice-out dates as compared to their inland
counterparts.

3.3. Linear-Circular Correlation
Linear-circular (L-C) correlation (Rx𝜃 ; Mardia, 1976) approach is utilized to measure the linear association
between winter/spring climate variables and spring lake ice-out dates. Suppose X and 𝜃 denote the variables
seasonal temperature/snowfall and spring ice-out date (in radians), respectively. L-C correlation coefficient is
defined as the multiple correlations between X and angular components (cos 𝜃, sin 𝜃), assuming that the cir-
cular variable can be described by a random vector v = (cos 𝜃, sin 𝜃)T in a plane (Mardia, 1976). For n pairs of
X and 𝜃, this can mathematically be written as

Rx𝜃 =

√
r2

xc + r2
xs − 2rxcrxsrcs

1 − r2
cs

(5)

where the correlations are rxc = cor(X, cos 𝜃), rxs = cor(X, sin 𝜃), and rcs = cor(cos 𝜃, sin 𝜃). If the winter/spring
climate variable and spring lake ice-out dates do not exhibit covariability, then Rx𝜃 will approach zero. In con-
trast, if climate variable and spring lake ice-out dates are strongly associated with each other, then Rx𝜃 will
be close to ±1. Under the null hypothesis of no correlation between X and 𝜃, the test statistics follows the
distribution

(n − 3)R2
x𝜃

1 − R2
x𝜃

∼ F2,n−3 (6)

given that X is normally distributed (page 246, ; Mardia & Jupp, 2009). In this study, correlation coefficients are
taken as significant,if the hypothesis that there is no correlation between the two variables is unlikely with
a probability of 0.95. For comprehensive expositions on L-C correlation coefficient and other forms of L-C
correlation techniques, the reader is referred to books by Mardia and Jupp (2009) and Jammalamadaka and
Sengupta (2001).
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3.4. Circular-Circular Correlation
The circular-circular (C-C) correlation (r𝜃𝜙) approach is used to assess the rotational association between two
time series of lake ice-out dates. For n pairs of 𝜃 and 𝜙, this can be mathematically expressed as (page 176, ;
Jammalamadaka & Sengupta, 2001)

r𝜃𝜙 =

n∑
i=1

sin(𝜃i − 𝜃̄) sin(𝜙i − 𝜙̄)√
n∑

i=1
sin2(𝜃i − 𝜃̄) sin2(𝜙i − 𝜙̄)

(7)

where 𝜃̄ and 𝜙̄ are the sample mean directions. If r𝜃𝜙 is close to zero, it suggests that the two time series of lake
ice-out dates are rotationally independent. On the other hand, when r𝜃𝜙 approaches±1, it indicates that there
is a strong rotational association between the two time series of lake ice-out dates. Under the null hypothesis
of no correlation between 𝜙 and 𝜃, the test statistics

t =
√

f r𝜃𝜙 (8)

follows a standard normal distribution. The term f is given by

f = N

n∑
i=1

sin2(𝜃i − 𝜃̄)
n∑

i=1
sin(𝜙i − 𝜙̄)

n∑
i=1

sin2(𝜃i − 𝜃̄) sin2(𝜙i − 𝜙̄)
(9)

Here circular correlation coefficients are taken as significant, if the assumption that there is no correlation
between the two time series of ice-out dates is unlikely with a probability of 0.95. For further discus-
sions on C-C correlation coefficient or other forms of L-C correlation techniques, the reader is referred
to comprehensive expositions in the published literature (Jammalamadaka & Sengupta, 2001; Mardia &
Jupp, 2009).

3.5. L-C Regression
Figure 3 shows the procedural framework applied here for inferring the efficacy of winter and spring climate
parameter(s) on the variability of lake ice-out dates. The framework employs preliminary circular diagnostic
methods described in earlier sections, as well as assess outputs from candidate ice-out models of varying
complexity, developed using the circular regression approach described below. In the latter approach, model
building was done in stages beginning with the null model, which presumes that spring ice-out date variabil-
ity is dependent exclusively on the spring AFDD and AMDD. Subsequently, spring snowfall, winter AFDD and
AMDD, and winter snowfall are sequentially added in the following models and fitted. Model parameter sig-
nificance and outputs across candidate models are then compared to assess the relevance of winter and/or
spring climate variables in controlling the variability of spring ice-out dates across Maine lakes.

3.5.1. von Mises Distribution
The von Mises distribution, first proposed by von Mises in 1918, is the most common and best studied of
unimodal circular distributions. The reasons for its popularity is (a) its results are easier to interpret, as its
inference techniques are well developed; (b) it is flexible with regard to the effect of parameters; (c) it has
an in-built measure for scale (dispersion; Jammalamadaka & Sengupta, 2001). Thus, it plays a central role in
circular statistics, akin to the Normal distribution for linear data analysis. The von Mises probability density
function for random variable 𝜙 is given by

f (𝜙;𝜇, 𝜅) = 1
2𝜋I0(𝜅)

e𝜅cos(𝜙−𝜇), 0 ≤ 𝜙, 𝜇 < 2𝜋; 𝜅 > 0 (10)

where I0() is the modified Bessel function of zeroth order and 𝜇 is the mean direction and 𝜅 is the concen-
tration parameter. When 𝜅 > 0, the density is unimodal and symmetrical about the 𝜇 and as 𝜅 increases, the
distribution increasingly becomes tightly clustered. For 𝜅 > 2, the distribution can be well approximated by a
Normal distribution with mean 𝜇 and variance (1∕𝜅) (Fisher & Lee, 1992).
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Figure 3. Procedural framework for developing and assessing circular regression models for ice-out dates: three preliminary diagnostic techniques, circular
regression model framework, and parameter estimation method and three approaches for assessing model outputs and performance.

The appropriateness of von Mises distribution in representing the probability distribution of ice-out dates for
studied lakes are verified using Watson’s U2 test (Lockhart & Stephens, 1985). This test compares the mean
squared deviation between the empirical cumulative distribution function and true cumulative distribution
function, at all data points, to the deviation against the critical value at alpha level. Results show that the
assumption the probability structure for lake ice-out dates has a von Mises distribution cannot be rejected at
90% significance level for all lakes (see Table 1).

3.5.2. Model Framework and Fitting
In the L-C regression models with von Mises distribution, winter and/or spring climate variables are described
as linear covariates, and the lake ice-out dates is represented as a circular response variable. In general, the
response of lake ice-out date of to seasonal climate variables can be modeled by regressing (a) the mean
direction (𝜇), (b) the dispersion (𝜅), (c) or both the mean direction (𝜇) and dispersion of ice-out dates to win-
ter/spring climate variables. In the present study, we focus on the first model and therefore model the mean
direction 𝜇 of ice-out dates to climate covariates xi as

𝜇i = 𝜇0 + g(xi𝛽) + 𝜖i (11)

where 𝛽 corresponds to the vector of regression parameters to be estimated, 𝜇0 is the circular mean of the
dependent variable, g() is the link function, and 𝜖i is the residual term from the von Mises vM(0, 𝜅) distribu-
tion. The purpose of the link function g() is to convert linear variables to circular ones. Possible choice of link
functions are discussed in Fisher and Lee (1992) and Jammalamadaka and Sengupta (2001); however, in this
study we used

g(u) = 2 tan−1() (12)
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The maximum likelihood estimates, for the parameters (𝜇0, 𝛽 , and 𝜅) of a homoscedastic von Mises regression
model, are the values that maximize the log likelihood function

L(𝛽|X) = −N log I0(𝜅) + 𝜅
∑

N
i=1 cos(𝜃i − 𝜇0 − 2 tan−1(𝛽Xi)) (13)

Often, the determination of the maximum likelihood estimates requires the use of iterative procedures. The
circular package (Agostinelli & Lund, 2013) in the R statistical computing environment provided the opti-
mizing algorithm to estimate 𝜇, 𝛽 , and 𝜅. Furthermore, large sample asymptotic variance is used to estimate
standard errors for the parameters, and to test hypotheses (Fisher & Lee, 1992).

3.5.3. Model Diagnostics and Inference
Model inference on the relative importance of winter/spring climate variables on spring ice-out dates is based
on (a) parameter significance tests, and (b) comparing model fitness. Significance tests for model parameter
estimates indicate whether there is a detectable relationship between the response variable and predictive
variable(s) under focus, for a given level of certainty. In the present study, the significance of model parameter
estimates for winter/spring degree days and snowfall are determined using t statistics. Model parameters are
considered significant, if the significance level (p) is less than 0.10. On the other hand, if models are succes-
sively fitted in order of increasing complexity, comparing the relative fit for successive pairs of models provides
an alternative means of assessing the null hypothesis that the omitted (added) term(s) has no significant con-
tribution on the spring ice-out date variability. In this study, Model 0 (M0), Model 1 (M1), and Model 2 (M2) are
special cases of M1, M2, and M3, respectively, and thus, comparison of, say, M0 and M1 using goodness of fit
tests is a test of the hypothesis that spring snowfall has no influence on the timing of spring lake ice-out dates.
The relative fit across models is determined using coefficient of determination (R2) and bias-corrected Akaike
Information Criterion (AICc). The coefficient of determination (R2), which measures the variability explained
by the model, was computed for each model by squaring the C-C correlation between observed and model
simulated ice-out dates (Lund, 1992). In addition, to balance between model complexity and model fitting of
data, the corrected AICc was employed. AICc is a likelihood-based criterion that quantifies the relative amount
of information lost, if a given ice-out model is used to approximate the underlying process that generates the
observed lake ice-out dates. Assuming that the ice-out model residuals have a von Mises distribution with
concentration parameter 𝜅̂, the AICc of a given model is given as

AICc = 2n log I0(𝜅̂) − 2n𝜅̂ + n(n + 1)
n − l − 2

(14)

where I0() is the modified Bessel function of zeroth order, n is the sample size, and l is the number of estimated
parameters (degrees of freedom) in the model.

4. Results
4.1. Seasonal Meteorological Covariates
Six seasonal meteorological variables were considered in the development of our circular regression models
for ice-out dates (see Figure 4). This section provides a rationale, both physical and statistical, for the inclusion
of these variables.

4.1.1. Seasonal Winter Degree-Days and Lake Ice-Out
The thickness of winter ice cover over lakes determines the amount of heat energy needed to melt and clear
the ice from lake surface. The preceding winter AFDD and AMDD quantities can have strong influence on the
timing of lake ice-out dates in spring. In this study, the winter AFDD (AMDD) is computed as the daily degree
days below (above) freezing (0 ∘C or 32 ∘F) summed over the total number of days during December and
February when daily average temperature was below (above) freezing.

L-C correlation tests between winter AFDD and AMDD and spring ice-out dates for studied Maine lakes
shows that the preceding winter AFDD has a significant positive correlation (𝜌 = 0.25–0.53, p < 0.05) with
the spring ice-out dates for lakes across all three-climate regions in Maine (see Tables S2a–S2f in the sup-
porting information). This indicates that the higher winter AFDDs—that is, the larger the freeze content to
grow ice—the longer for the winter ice to clear in spring, and vice versa. Spatial comparison of the correlation
coefficient across studied lakes show that the correlation between spring ice-out dates and winter AFDDs is
higher in coastal and southern interior regions (𝜌 = 0.31–0.53) as compared with northern interior regions
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Figure 4. Schema representing the seasonal evolution of lake ice and linked climatic variables. The climate covariates (X)
and ice-out date (𝜃) are shown along the winter-spring seasonal timeline.

(𝜌 = 0.24–0.45). The underlying physical reasoning for the reduced influence of winter AFDD on the vari-
ability of spring ice-out dates of northern interior regions are (a) formation and growth of ice in northern
interior Maine lakes begins in fall, which reduces the role of winter AFDD variability on lake ice thickness (b)
lake ice-out dates in the northern interior regions often occur later in spring (May–June), which allows spring
climate variables to moderate the effect of winter AFDD on the spring ice-out dates.

On the other hand, seasonal winter AMDD shows a significant negative correlation (|𝜌| = 0.25-0.55, p < 0.05)
with spring lake ice-out dates primarily in coastal and southern interior regions (see Table S2). This implies that
the higher winter AMDDs—that is, the lower the cold content in the ice cover—the earlier than usual spring
ice-out dates and vice versa. Spatially, the relative correlation between winter AMDD and spring lake ice-out
dates decreases toward interior Maine regions. The major factor for the reduced influence of winter AMDD on
spring ice-out dates of inland Maine lakes is that over the region, daily temperatures during December and
February months seldom, if ever, exceed freezing point (0 ∘C or 32 ∘F).

4.1.2. Principal Component Analysis for Winter Degree Days
There is a significant (p < 0.1) negative correlation between winter AFDD and AMDD for most Maine regions
(see Tables S2a–S2f ). Consequently, using both winter degree day indices as predictor variables in lake ice-out
date regression models generates parameter estimates for winter AFDD and AMDD that are less reliable and
physically meaningful, due to collinearity effect. Fekedulegn et al. (2002) showed that transforming the orig-
inal variables into a new set of orthogonal uncorrelated variables using principal component analysis (PCA)
eliminates this effect. Thus, PCA (using the covariance matrix) was performed on the time series of winter
AFDD and AMDD at each meteorological station. Across the six meteorological stations, the first principal
component (PC1) of winter degree days represents 97–99.5% of the total variability and therefore may be
considered as the dominant pattern of winter degree-day variability (see Table S3a). Furthermore given that
the magnitude and variance of winter AFDD is much larger than that of winter AMDD for all stations, the
loading of winter AFDD in each PC1 pattern is positive and over 0.99, whereas the loading of winter AMDD
is negative and less than 0.03 (see Table S3b). The result implies that PC1 patterns primarily reflect the win-
ter AFDD conditions over lakes, and as such positive (negative) PC1 indices represent above (below) average
winter AFDDs. Spatially, there is a strong positive correlation (𝜌 > 0.91) between PC1 patterns across stations,
which shows strong regional coherence in the temporal pattern of winter AFDD variability in Maine. On the
other hand, the second principal component (PC2) reproduces only 0.5–3.0% of the total variability in win-
ter degree days across the six meteorological stations (see Table S3a). Furthermore, for each PC2 pattern, the
loading of winter AFDD is negative and less than 0.03, while the loading of winter AMDD is positive and over
0.99 (see Table S3b). This suggests that PC2 scores predominantly represent the winter AMDD conditions over
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lakes and positive (negative) PC2 phases imply above (below) normal winter AMDD. There is a strong positive
correlation (𝜌 > 0.83) between the PC2 patterns across stations, which implies strong spatial synchroneity in
the pattern of winter AMDD variability in Maine.

4.1.3. Winter Snowfall
Winter snowfall can affect the thickness and type of winter ice cover and in turn the timing of spring ice-out
dates by (a) reducing rate of ice growth in winter by adding insulation, (b) increasing the winter cold (freeze)
content of lake ice, and (c) promoting the development of snow ice, thereby affecting the composition of the
winter ice cover over lakes (Adams, 1976). In this study, time series of winter snowfall for the study period was
determined by summing the daily total snowfall recorded at each station from the beginning of December to
the end of February for each year.

L-C correlation results show that winter snowfall has a significant positive correlation (𝜌 = 0.28–0.43, p < 0.05)
with spring lake ice-out dates chiefly in coastal and southern interior regions (see Tables S2a–S2f ). This means
that the higher winter snowfall, the longer the duration of winter ice. Furthermore, the coefficient and sig-
nificance of this linear association decreases toward the interior regions. Again, this is mainly because lake
ice-out date in deep interior regions occurs relatively later in spring (May–June), which allows spring climate
conditions to have more influence on the timing of ice breakup date. It should be noted that winter snowfall
has little or no correlation with the two principal components of winter degree days (see Table S2). This indi-
cates that the relationship between winter snowfall and spring ice-out dates is independent of the prevailing
winter temperature conditions.

4.1.4. Seasonal Spring Degree Days and Lake Ice-Out
Spring is the period when the bulk of the ice melting occurs. Williams (1965) showed that spring temperature
largely determine the melt rate of winter ice cover. Hodgkins et al. (2002), based on their correlation results,
suggested that the prevailing average spring (March–April) temperatures explain 50–70% of the variability
in the timing of spring ice-out dates in New England lakes. In this study, the spring AFDD (AMDD) is computed
as the daily degree days below (above) freezing (0 ∘C or 32 ∘F) summed over the total number of days during
March and April when daily average temperature was below (above) freezing.

L-C correlation results show that seasonal spring AFDD has significant negative correlation (|𝜌| = 0.35–0.65,
p < 0.05) with lake ice-out dates across all climate regions in Maine (see Tables S2a–S2f ). This implies that
the higher the spring AFDDs—that is, the higher the cold content in lake ice—the later the spring ice-out
dates and vice versa. Furthermore, the role of spring AFDD on spring lake ice-out dates of Maine lakes across
the three climate divisions appears to be uniform, as the correlation coefficients do not show any systematic
spatial patterns.

On the other hand, seasonal spring AMDD has significant positive correlation (𝜌 = 0.73–0.84, p < 0.05)
with lake ice-out date in all climate regions (see Tables S2a–S2f ). This suggests that the higher the spring
AMDD—that is, the higher the melt energy at lake surface—the earlier the timing of ice-out dates. Spatially,
the strength of correlation between spring AMDD and lake ice-out dates increases toward the interior regions.
This is mainly because lake ice-out date in deep interior regions occurs relatively later in spring (May–June),
which allows spring temperatures to have more influence on the timing of ice breakup date.

4.1.5. PCA for Spring Degree Days
There is a significant (p < 0.1) negative correlation between spring AFDD and spring AMDD in all stations (see
Tables S2a–S2f ). To reduce collinearity effect, the spring AFDD and AMDD variables at each lake are orthog-
onalized into two principal components and these principal components are included as predictor variables
in the ice-out date regression models.

Across the six stations, the first principal component (PC1) of spring degree days represents 77–87% of the
total variability in spring AFDD and AMDD and therefore may be considered as the leading pattern of local
spring degree day variability (see Table S4a). Furthermore, in each of the PC1 patterns, the loadings for spring
AFDD (AMDD) is of negative (positive) sign, which implies that when PC1 is in the positive phase, spring AFDD
(AMDD) is lower (higher) than normal (see Table S4b). However, the loading of spring AFDD and AMDD in PC1
pattern varies across different climate regions in Maine with spring AMDD having relatively higher loading
than spring AFDD in stations found in southern interior and coastal regions and vice versa for stations found
in northern interior regions. This is because even in spring months, daily temperatures get below 32 ∘F for a
significant period of time in northern interior Maine regions. Spatially, there is a strong positive correlation
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(𝜌>0.87) between spring PC1 patterns across stations, which suggests that there is spatial coherence between
spring PC1 patterns across Maine regions.

The second principal component (PC2) for spring degree days reproduces 17–23% of the total variability
across the six stations (see Table S4a). Furthermore, in each of the PC2 patterns, the loading for spring AFDD
and AMDD are both positive implying positive (negative) PC2 phases are related to higher (lower) than normal
spring AFDD and AMDDs over lakes (see Table S4b). AFDD and AMDD values gage the range of the seasonal
temperature distribution. As such seasonal conditions where both the AFDD and AMDD are either high or low
occur are indicative of a change in the variability of seasonal temperatures. Consequently, PC2 indices show
a strong positive correlation (𝜌 > 0.68) with the intraseasonal standard deviation of spring temperatures at
all stations where positive (low) spring PC2 phases are related to high (low) intraseasonal spring temperature
variability in all stations (see Figure S1). Similar to spring PC1 of spring degree days, the loading of spring AFDD
and AMDD in PC1 pattern varies across different climate regions in Maine although here spring AMDD having
relatively lower loading than spring AFDD in stations found in southern interior and coastal regions and vice
versa for stations found in northern interior regions. There is a strong spatial correlation (𝜌 > 0.68) between
the PC2 patterns of spring degree days across the six stations, which implies of a regional synchroneity in the
PC2 variability patterns across Maine regions.

Another important result of note is that the two principal components for spring degree days show little or
no correlation with that of the winter degree days in all regions (see Table S2). This indicates an absence of
climatic persistence between winter and spring degree day variability.

4.1.6. Spring Snowfall
Spring snow accumulation can reduce the melt rate of ice cover by (a) increasing the albedo (thereby lowering
radiation absorption) of the ice cover (b) increasing the cold content of the ice cover. In this study, the annual
spring snowfall from 1950–2010 was determined by summing the daily total snowfall from the beginning of
March to the end of April for each year.

L-C correlation results reveal that spring snowfall has significant positive correlation (𝜌 = 0.28-0.55, p < 0.05)
with the timing of spring ice-out dates of studied lakes across all climate regions in Maine (see Table S2). This
suggests that the more spring snowfall, the longer the duration of ice over lakes. Furthermore, the correlation
coefficients across different regions indicate that the correlation coefficient for spring snowfall is lower in
northwestern Maine regions (0.28–0.31) as compared with other regions (0.41–0.55).

4.2. Model Output and Inference
The four circular models for each lake describe the variability of spring ice-out dates, as a function of the pre-
vailing winter and/or spring degree days, and snowfall. Key model results are summarized in Tables S5a–S5d
for studied lakes. The 2tan−1( ) used as link function between covariates and ice-out dates (see equation (10)
and (11) has both transformative and multiplicative effect on changes in the covariates. For instance, a coef-
ficient of −0.001 associated with spring PC1 implies that an increase by 1 unit in spring PC1 is associated with
a multiplicative decrease of 2tan−1(-0.001) radians or 6.6 days in spring ice-out dates.

Model 0 (M0), a model that explains spring ice-out date variability as a function of the two principal compo-
nents for spring degree days, captures over 50% of the total variability in ice-out dates of studied lakes (see
Table S5a and Figure 5). The prevailing spring temperatures have a strong control over the timing of spring
ice-out dates in Maine lakes. However, the efficacy of spring degree days in modulating the timing of spring
ice-out dates is not the uniform across Maine lakes, as the performance of M0 in studied lakes shows variations
at regional, and to a lesser extent local scales (see Table S5a). For instance, the explained variance (R2) by M0

for studied coastal and southern interior Maine lakes is less than 60%, while for most northern interior lakes,
M0 represents at least 65% of the total variance. Also in Northern interior Maine regions, M0 captures over
70% of the total variance in high altitude lakes such as Lake Rangeley and Lake Mooselucmeguntic, while this
is much lower in relative low altitude lakes such as Lake Portage and Lake Squapan. At local scale, the M0 for
relatively large, deep lakes such as Lake Damariscotta and Moosehead shows higher unexplained variance as
compared with that of relatively small, shallow lakes in the same climate division.

In M0, the coefficient for PC1 of spring degree days is negative, and statistically significant (p < 0.1) across
all lakes, while the parameter for PC2 is positive and statistically significant for studied lakes, with the excep-
tion of Lake Damariscotta and Lake Norway (see Table S5a). Thus, positive PC1 phases (lower than average
spring AFDD and higher spring AMDD) are related to earlier than normal spring ice-out dates in lakes, whereas
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Figure 5. Relative performance of candidate ice-out models for select Maine lakes. M0, M1, M2, and M3 denote the four candidate ice-out models developed for
each lake. The red diamonds and blue circle represent the AICc and RUV values for each lake ice-out date model, respectively.

positive PC2 indices (higher than normal spring AFDD and AMDD) are linked to later than normal spring
ice-out dates. Furthermore, PC2 indices represent the intraseasonal variance in spring degree days, and these
results suggest that the timing of spring ice-out dates in Maine lakes is sensitive not only to the magnitude
of spring degree days but also on the intraseasonal variability of spring temperatures. Comparing the param-
eter estimates for PC1 and PC2 patterns across the M0 of studied lakes reveals that in general the coefficient
for PC1 (PC2) is of higher (lower) magnitude in southern interior and coastal Maine lakes relative to northern
interior lakes (see Table 2a).

Model 1 (M1), which includes spring snowfall in addition to the two principal components of spring degree
days to explain spring ice-out date variability, captures 56–75% of the total variability in the ice-out date of
studied lakes (see Table S5b and Figure 5). Assessing the R2 and AICc of M1 relative to that of M0 across studied
lakes indicates that the dependence of spring ice-out dates in Maine lakes to spring snowfall shows regional
variations based on climatic divisions, and to a lesser extent altitude. For instance, Figure 5 shows that the
change in R2 and AICc from M0 to M1 is higher in northern interior Maine lakes such as Lake Portage and Lake
Sebec, as compared to that of southern and coastal lakes such as Lake Damariscotta and West Grand. Also
for northern interior regions, the change in model fitness from M0 to M1 is higher in lower altitude lakes such
as Lake Moosehead and Lake Portage, relative to that of high-altitude lakes such as Lake Rangeley and Lake
Mooselucmeguntic.

In M1, the coefficient for spring snowfall is positive and statistically significant for all studied lakes, except
for Lake Mooselucmeguntic (see Table S5b). This implies that the higher the spring snowfall, the later the
spring iceout dates. Comparison of parameter estimates for spring snowfall across the M1 models studied
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Table 2
Comparing Key Statistics of Circular and Linear Regression Models for Lake Squapan (𝜅 = 88)

Regression coefficients Model fitness

Winter Spring

PC1 PC2 Snowfall PC1 PC2 Snowfall MAE RMSE

Model type Model (10−4) (10−4) (10−4) (10−4) (10−4) (10−3) R2 (days) (days)

Circular regression M0 −3.7∗∗∗ 3.4∗∗∗ 0.65 2.9 3.6

Linear regression M0 −7.4∗∗∗ 6.9∗∗∗ 0.65 2.9 3.6

Circular regression M1 −3.3∗∗∗ 3.9∗∗∗ 1.5∗∗∗ 0.73 2.3 3.2

Linear regression M1 −6.5∗∗∗ 7.7∗∗∗ 3.0∗∗∗ 0.73 2.3 3.2

Circular regression M2 0.5∗∗ −0.1 −3.2∗∗∗ 3.9∗∗∗ 1.3*** 0.74 2.2 3.0

Linear regression M2 0.9∗ −1.8 −6.4∗∗∗ 7.8∗∗∗ 2.5** 0.74 2.2 3.0

Circular regression M3 0.4∗∗ −1.0 0.3∗ −3.2∗∗∗ 4.0∗∗∗ 1.3∗∗∗ 0.75 2.2 3.0

Linear regression M3 0.9∗ −1.8 0.5 −6.3∗∗∗ 8.0∗∗∗ 2.6∗∗∗ 0.75 2.2 3.0

Note. The significance of model parameter estimates was determined using t statistics method and circular regression parameters. MAE = mean absolute error;
RMSE = root-mean-square error. ∗Significant at 0.1 significance level. ∗∗Significant at 0.05 significance level. ∗∗∗Significant at 0.01 significance level.

lakes shows that the parameter coefficients for spring snowfall are of lower magnitude in northwestern lakes
(Rangeley and Mooselucmeguntic) as compared with lakes in other Maine regions. This result is in consensus
with the correlation analysis (section 4.1.6) that the northwestern high altitude lakes have lesser sensitivity to
spring snowfall than lakes in other regions.

Model 2 (M2), with two principal components of winter degree days in addition to the predictor variables in M1,
explains 67–77% of the variability in ice-out dates in studied lakes (see Table S5c and Figure 5). Comparison
of model fitness metrics between M2 and M1 indicates that the efficacy of winter degree days in modulating
the timing of spring ice-out dates in Maine lakes, is higher in large, deep coastal, and southern Maine lakes
as compared with small, shallow, and northern interior lakes. For instance, the relative change in R2 and AICc
from M1 to M2 is higher for southern and coastal lakes such as Lake Damariscotta and Lake West Grand, as
compared to that of northern interior lakes such as Lake Portage and Lake Rangeley. Also in northern interior
regions, the improvement in model fitness from M1 to M2 is higher in large, deep lakes such as Moosehead,
as compared with small, shallow lakes such as Squapan or Portage.

In M2, the coefficient for PC1 of winter degree days is positive and statistically significant (p < 0.1) across all
studied lakes, while the parameter for PC2 is negative and statistically significant only for coastal lakes (see
Table S5c). In general, this implies that positive PC1 phases (higher than normal winter AFDDs) are associ-
ated with later than average spring lake ice-out dates, while positive PC2 phases (higher than normal winter
AMDDs) are related to earlier than average spring lake ice-out dates. Comparison of parameter estimates
for PC1 and PC2 of winter degree days across the M2 models of studied lakes reveals that the coefficient
for PC2 is of higher magnitude in coastal lakes, relative to lakes in other Maine regions. This indicates that
coastal and southern interior lakes have higher sensitivity to PC2 indices (i.e., winter AMDD), as compared with
those in northern interior lakes. This conclusion is consistent with the finding in the correlation analysis from
earlier section.

Model 3 (M3), which includes winter snowfall in addition to M2 predictor variables to model spring ice-out
dates, captures 68–77% of the total variability of ice-out dates in studied lakes (see Table S5d and Figure 5).
Assessing the change in model fitness metrics between M2 and M3 for studied lakes indicates that the mod-
ulating influence of winter snowfall on spring ice-out dates is higher for coastal Maine lakes. For instance,
Figure 5 shows that the relative change in R2 and AICc from M3 to M2 is higher for southern and coastal
lakes such as Lake Damariscotta and Lake Auburn as compared to that of northern interior lakes such as Lake
Portage and Lake Rangeley.

In M3, the coefficient for winter snowfall is positive and statistically significant for coastal Maine lakes such
as Maranacook, Damariscotta, and China and Auburn (see Table S5d). This implies that the higher the winter
snowfall over lakes, the later the spring ice-out dates. Comparison of parameter estimates for winter snowfall
in M3 models across studied lakes shows that the coefficient for winter snowfall in coastal lakes in higher in
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coastal lakes as compared to lakes in other Maine regions. This implies that the sensitivity of spring ice-out
dates to winter snowfall is higher in coastal lakes as compared with interior Maine regions.

4.2.1. Model Residual Diagnostics
By determining the incremental information added by incorporating winter and/or spring climate variables,
the previous section assessed the overall efficacy of winter and spring climate variables, in modulating the
timing of spring ice-out dates in Maine lakes. However, this provides limited insight into the role of these vari-
ables in producing unusually early/late spring ice-out dates in Maine lakes. Thus, in this section, the import of
winter and/or spring variables in producing large departures in the timing of spring ice-out events in Maine
lakes was assessed by contrasting the residuals for the earliest and latest 10 ice-out dates, across candidate
models (i.e., M0-M3). The premise in such assessments is that majority improvement in the model estimation
of the earliest/latest ice-out events, after the inclusion of a seasonal climate variable/s, implies the importance
of the seasonal climate variable on the occurrence of these events. Figures 6 and S5 depict intermodel resid-
uals for various ice-out dates, and the gray area in these plots represents regions where the estimate made
by complex model has lesser error than that of the reduced model(s). In general, the pattern of M0 residuals
for the earliest and latest 10 ice-out dates reveals that the ice-out date models, conditioned on the two prin-
cipal components of spring degree days, performs poorly when estimating ice-out dates before mid-April for
coastal and southern interior lakes and after 10 May for northern interior lakes. Counting the number of earli-
est/latest 10 lake ice-out events (upper and lower triangles) falling in the gray area of M1-M0 residual plot for
studied lakes, reveals that for lake Sebec, Portage, Mooselucmeguntic, Squapan, Norway, and Auburn, more
than half of the residuals for both the earliest and latest 10 spring ice-out dates are in the gray area of M1-M0

subspace. For instance, it can be observed in Figure S5k that the M1-M0 residuals for 7 (8) of the 10 earliest
(latest) ice-out dates at Lake Portage are in the gray area within M1-M0 space. This indicates that the efficacy
of spring snowfall in engendering early/late ice-out dates in Maine lakes, is the highest in northern interior
regions. Similarly, tallying the number of earliest/latest 10 ice-out events within the gray area of M2-M1 resid-
ual plots, for studied lakes, shows that for Lake Sebec, Moosehead, West Grand, Norway, Damariscotta, China,
and Auburn, more than 60% of both the earliest and latest ice-out events are within the gray area of M2-M1

subspace. For instance, Figure 6 shows that the M2-M1 residuals for 9 of the 10 earliest (latest) ice-out dates at
Lake Norway are in the gray area within M2-M1 space. This indicates that the efficacy of daily winter tempera-
tures, in producing early/late ice-out dates in Maine lakes, is the highest in coastal and southern interior lakes,
and large northern interior lakes. Finally, counting the number of earliest/latest 10 ice-out events within the
gray area of M3-M2 residual plots, for studied lakes, shows that for Lake Maranacook, China, Damariscotta and
Sebec, 70% or more of the earliest 10 ice-out events are within the gray area of M3-M2 subspace. For exam-
ple, the M3-M2 residuals for 8 of the 10 earliest ice-out dates at Lake Damariscotta are in the gray area, within
M3-M2 space (see Figure S5c). This implies that the antecedent winter snowfall quantity, over coastal regions,
has a significant modulating effect on the occurrence/non-occurrence of the earliest ice-out dates of lakes.

High coherence in model residuals for pairs of lakes, indicates how well the ice-out model performs in estimat-
ing the spring ice-out dates for these lakes. For instance, if the M0 residuals for two lakes are highly correlated,
in years where M0 overestimates (underestimates) the ice-out date for one of these lakes, M0 also tends to
overestimate (underestimate) the ice-out date for the other lake as well. Therefore, the pairwise (circular)
correlation between model residuals of selected lakes was determined, across the four ice-out models devel-
oped. Results show that across the four ice-out models, the strength of correlation between model residuals
for two lakes varies depending on the similarity/difference in their respective climate division, and to a lesser
extent proximity from each other (see Figure 7). For instance, correlation between model residuals for Lake
China and Lake Maranacook across M0 to M3 ranges from 0.82 to 0.87, while these correlations between Lake
China and Lake Presque ranges from 0.20 to 0.27. This is because ice cover seasons for lakes in the same cli-
mate regions have similar sensitivity to winter and spring meteorological variables, given that the prevailing
climate conditions over lakes, in the same climate divisions are analogous. On the other hand, the correlation
between model residuals for two lakes in general decreases with increasing complexity of ice-out date models
(see Figure 7).

In addition to these four seasonal climate variables studied in this paper, the year-to-year variability of spring
lake ice-out dates can be modulated by other climatic/nonclimatic variables such as wind, cloudiness, or lake
depth. As such, it is not surprising to observe years where all four models for studied lakes underperform by
relatively large margins (> 5days). For example, the four ice-out date models developed for all 12 lakes overes-
timate the timing of spring ice-out dates for the year 2002. To understand the underlying climatic factors, the
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Figure 6. Intermodel residual comparison for ice-out dates at Lake Norway. Model residuals are calculated as the
difference between observed and model predicted ice-out dates. The gray region represents the region within bivariate
model residual space where estimates from relatively complex models show improvement than that of simpler ones.
The filled triangles pointed upward (downward) symbolize the earliest (latest) 15 ice-out dates, while the dots represent
other ice-out dates.

prevailing meteorological conditions during the winter and spring of 2002 were scrutinized. It was noted that
during the winter and spring of 2002, there was unusually high amount of precipitation in the form of rain.
Given that rainfall promotes the melting of lake ice by reducing albedo and freeze content of surface lake ice
the four candidate ice-out models are vulnerable to overestimation, when rainfall has a significant influence
in modulating the timing of ice-out date of lakes.

4.2.2. Comparison of Circular Regression Models to Traditional Linear Regression Models
As noted in section 1, linear models/methods are not appropriate for analyzing ice-out date(a circular ran-
dom variable) due to model specification. However, Table 1 shows that the kappa for ice-out dates of studied
lakes is greater than 26, and according to Fisher and Lee (1992), von Mises distribution with 𝜅 > 2 can be well
approximated using normal distribution. Thus, using the traditional linear regression (TLR) method, ice-out
models of varying complexity were developed for studied lakes (see Tables S6a–S6d), and for two of these
lakes, the resulting model coefficients and model errors were compared to that of circular models (see Tables 3
and 2). Results reveal that TLR models with only spring degree days explain over 50% of the total variance in
ice-out date for Lake Damariscotta and Lake Squapan. They also show that the inclusion of winter meteorolog-
ical variables in TLR models for ice-out dates reduces model estimate error for both lakes. The consistency in
TLR and circular regression model is generally expected for cases with small variance. However, in lakes where
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Figure 7. Circular correlations in model residuals for selected Maine lakes across M0 to M3. (a). Location of selected lakes in Maine. The dots represent the
position of lakes in map while the gray lines denote the climate divisions in Maine. (b–e) Correlation plots of model residuals for selected lakes across M0 to M3.
In each correlation plot, the filled area in pie charts denotes the degree of correlation between a pair of lakes, while the gray dots inside pie chart signify
correlation coefficients that are not significant. (f ) Distribution of correlations between model residuals of pair of lakes for the four ice-out date models . The
violet, blue, green, and red curves represent distribution of correlations for M0, M1, M2, and M3.

the timing of ice-out dates shows large variance (𝜅 > 2), the difference in model results and performance
between TLR models and circular regression models is expected to be prominent. As such, the L-C framework
developed in this study offers a parsimonious statistical approach to model the effect of linear meteorological
variables on lake ice phenology, particularly in a changing climate wherein warmer temperatures are poised
to induce increased variability in ice-out dates.

5. Discussion and Conclusions

This study presented a circular regression framework for modeling ice-out dates, conditioned on a suite of
winter and spring climate variables (i.e., degree days and snowfall), to determine the import of winter and
spring climate conditions on the timing of ice-out dates in Maine lakes. Winter/spring AFDD and AMDD vari-
ables were orthogonalized into two principal components to reduce collinearity effect in ice-out date models,
and these principal components were included as predictor variables in the circular regression models for
ice-out dates. Parameter significance tests and inter-model fitness tests (R2 and AICc) across candidate ice-out
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Table 3
Comparing Key Statistics of Circular and Linear Regression Models for Lake Damariscotta (𝜅 = 25)

Regression coefficients Model fitness

Winter Spring

PC1 PC2 Snowfall PC1 PC2 Snowfall MAE RMSE

Model type Model (10−4) (10−4) (10−4) (10−4) (10−4) (10−3) R2 (days) (days)

Circular regression M0 −6.9∗∗∗ 2.2 0.53 5.4 6.9

Linear regression M0 −13.3∗∗∗ 4.2 0.53 5.4 6.9

Circular regression M1 −6.2∗∗∗ 2.5 1.5∗∗∗ 0.55 5.2 6.7

Linear regression M1 −12.3∗∗∗ 4.9 2.9 0.54 5.2 6.7

Circular regression M2 1.0∗∗∗ −9.7∗∗∗ −5.1∗∗∗ 1.4 1.6∗∗ 0.64 4.4 5.8

Linear regression M2 2.1∗∗ −19.3∗∗∗ −10.2∗∗∗ 2.8 3.3∗ 0.64 4.4 5.8

Circular regression M3 1.1∗∗∗ −7.5∗∗∗ 1.5∗∗∗ −4.6∗∗∗ 7.9 1.7∗∗∗ 0.70 4.4 5.6

Linear regression M3 2.3∗∗ −14.8∗∗ 3.0∗∗ −9.2∗∗∗ 1.7 3.3∗∗ 0.69 4.4 5.6

Note. The significance of model parameter estimates was determined using t statistics method and circular regression parameters. MAE = mean absolute error;
RMSE = root-mean-square error. ∗Significant at 0.1 significance level. ∗∗Significant at 0.05 significance level. ∗∗∗Significant at 0.01 significance level.

date models revealed that for Maine lakes:

a. The joint effect of seasonal spring degree days (AFDD and AMDD) and the intraseasonal variance in spring
temperatures explains more than half of the total variability in spring lake ice-out dates in Maine. Spatially,
the modulating influence of spring temperature conditions on lake ice-out dates increases toward northern
interior Maine regions.

b. The relative role of spring snowfall in engendering early/late ice-out dates in Maine lakes is the strongest in
northern interior region.

c. The efficacy of the antecedent winter degree days (AFDD and AMDD) in modulating variability of lake ice-out
dates is significant, across all climate regions in Maine. However, the strongest effects are observed in large,
coastal lakes.

d. The relative influence of winter snowfall on lake ice-out date variability is significant, (p < 0.1) only in coastal
Maine regions.

A diagnostic analysis of years in which all four ice-out models developed most underperformed by more
than 5 days, indicated unexplained variance likely stemming from other hydro-climatic processes and lake
dynamics. In closing, we put forward the following remarks, and discuss emerging research directions.

1. This study focused on the efficacy of different climatic and nonclimatic variables in modulating the inter-
annual variability of spring ice-out dates of temperate lakes. Results indicate that in addition to spring
degree days, the state of the winter degree days and winter and spring snowfall contributes significantly
to the overall year-to-year variability of ice-out dates including the occurrence of early/late spring ice-out
dates of Maine lakes. Future works on this topic is still needed including determining the role of other
climatic/no-climatic variables on the interannual lake ice-out date variability, the use of different link func-
tions in circular ice-out date models and performance of non-parametric circular regression approach for
modeling ice-out dates.

2. Large-scale teleconnections patterns produce North American climate anomalies at a regional scale. For
Maine, it has been shown that the Tropical/Northern Hemisphere and North Atlantic Oscillation patterns
influence interannual winter temperature variability (Beyene & Jain, 2015). Given that the Climate Prediction
Centers in North America and Europe routinely provides skillful forecast of these climate patterns, winter
meteorological conditions derived from such information can be incorporated in circular ice-out date mod-
els conditioned on winter climate variables, to provide season-ahead outlooks on the spring time lake ice
season in Maine.

3. Data involving time-of-year variables are prevalent in hydrology and hydrometeorology and to date, con-
ventional approaches that characterize date-of-year variables as linear continuous data are often employed
to analyze such data. A number of studies have shown that such approaches produce erroneous results
(Jammalamadaka & Sengupta, 2001). This study presents a systematic framework and highlights (a) the
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applicability of circular statistical approaches in modeling circular/periodic data such as lake ice phenology
(b) the availability of circular counterparts for traditional linear data analysis techniques for environmental
systems analysis and modeling.
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